How do you solve #((8, 7), (1, 1))x=((3, -6), (-2, 9))#?
1 Answer
Aug 14, 2018
Explanation:
Let's try multiplying both sides by
#((1, -7),(-1, 8))((8, 7),(1,1))x=((1,0),(0,1))x = x#
whereas:
#((1, -7),(-1,8))((3,-6),(-2,9)) = ((17,-69),(-19,78))#
So:
#x = ((1, -7),(-1, 8))((8, 7),(1,1))x = ((1, -7),(-1,8))((3,-6),(-2,9)) = ((17,-69),(-19,78))#
In general, the multiplicative inverse of
#1/abs((a,b),(c,d)) ((d, -b),(-c, a))#
and in our example:
#abs((8, 7),(1, 1)) = 8 * 1 - 7 * 1 = 8 - 7 = 1#