Let's factorise the inequality
#7-x^2<=0#
#(sqrt7+x)(sqrt7-x)<=0#
Let #f(x)=(sqrt7+x)(sqrt7-x)#
Now, we build the sign chart
#color(white)(aaaa)##x##color(white)(aaaaaa)##-oo##color(white)(aaaa)##-sqrt7##color(white)(aaaa)##sqrt7##color(white)(aaaaa)##+oo#
#color(white)(aaaa)##sqrt7+x##color(white)(aaaaaa)##-##color(white)(aaaaa)##+##color(white)(aaaaa)##+#
#color(white)(aaaa)##sqrt7-x##color(white)(aaaaaa)##+##color(white)(aaaaa)##+##color(white)(aaaaa)##-#
#color(white)(aaaa)##f(x)##color(white)(aaaaaaaaa)##-##color(white)(aaaaa)##+##color(white)(aaaaa)##-#
Therefore,
#f(x)<=0# when #x in ]-oo,-sqrt7]uu[sqrt7,+oo[#