How do you solve 6(y^2-2)+y<0 using a sign chart?

1 Answer
May 20, 2017

Solution : -3/2< y < 4/3 . In interval notation ( -3/2,4/3)

Explanation:

6y^2 -12+y <0 or 6y^2+y-12 < 0 or (3y-4)(2y+3)< 0

Critical points are 3y-4=0 or y= 4/3, 2y+3=0 or y=-3/2

When y < -3/2 sign of (3y-4)(2y+3) is (-)*(-) = (+) i.e >0

When -3/2< y < 4/3 sign of (3y-4)(2y+3) is (-)*(+) = (-) i.e <0

When y > 4/3 sign of (3y-4)(2y+3) is (+)*(+) = (+) i.e >0

So Solution : -3/2< y < 4/3 . In interval notation ( -3/2,4/3)
graph{6x^2+x-12 [-40, 40, -20, 20]}
The graph also confirms above result #[Ans]