How do you solve 6/x<2 using a sign chart?

1 Answer
Jun 11, 2017

The solution is x in (-oo,0) uu (3,+oo)

Explanation:

Let's rewrite and simplify the inequality

We cannot do crossing over

6/x<2

6/x-2<0

(6-2x)/x<0

(2(3-x))/x<0

Let f(x)=(2(3-x))/x

Let's build the sign chart

color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaaaa)0color(white)(aaaaaaa)3color(white)(aaaaa)+oo

color(white)(aaaa)(x)color(white)(aaaaaa)-color(white)(aaaa)||color(white)(aaa)+color(white)(aaaa)+

color(white)(aaaa)(3-x)color(white)(aaa)+color(white)(aaaa)||color(white)(aaa)+color(white)(aaaa)-

color(white)(aaaa)f(x)color(white)(aaaaaa)-color(white)(aaa)||color(white)(aaa)+color(white)(aaaa)-

Therefore,

f(x)<0, when x in (-oo,0) uu (3,+oo) graph{(6/x)-2 [-22.81, 22.8, -11.4, 11.42]}