How do you solve 6/(3x-4) > x + 163x4>x+1?

1 Answer
Feb 17, 2017

-5/3 < x < 253<x<2

Explanation:

Multiply both sides of the inequality by 3x-43x4:

6 > (x+1)(3x-4)6>(x+1)(3x4)

Distribute the right-side: 6 > (3x^2-4x+3x-4)6>(3x24x+3x4)

Simplify by adding like terms and subtract the 66 from both sides:
6-6 > 3x^2-x-4-666>3x2x46;
0 > 3x^2-x-100>3x2x10

Factor the right-side: 0 > (3x+5)(x-2)0>(3x+5)(x2) or (3x+5)(x-2) < 0(3x+5)(x2)<0

Solve for values of xx that make the equation negative:
3x+5 < 03x+5<0 and x-2<0x2<0

3x < -53x<5 and x < 2x<2

x < -5/3x<53

Therefore: -5/3 < x < 253<x<2

From the graph of (3x+5)(x-2) < 0(3x+5)(x2)<0 you can see when y < 0y<0:
graph{3x^2-x-10 [-20.97, 19.03, -12.32, 7.68]}