How do you solve (5x-8)/(x-5)>=2 using a sign chart?

1 Answer
Feb 6, 2017

The answer is x in ]-oo, -2/3 ] uu ] 5, +oo[

Explanation:

Let's do some simplifications

(5x-8)/(x-5)>=2

(5x-8)/(x-5)-2>=0

((5x-8)-2(x-5))/(x-5)>=0

(3x+2)/(x-5)>=0

Let f(x)=(3x+2)/(x-5)

Let's build the sign chart

color(white)(aaaa)xcolor(white)(aaaaa)-oocolor(white)(aaaa)-2/3color(white)(aaaa)5color(white)(aaaaa)+oo

color(white)(aaaa)3x+2color(white)(aaaaaa)-color(white)(aaaa)+color(white)(aaaa)+

color(white)(aaaa)x-5color(white)(aaaaaaa)-color(white)(aaaa)-color(white)(aaaa)+

color(white)(aaaa)f(x)color(white)(aaaaaaaa)+color(white)(aaaa)-color(white)(aaaa)+

Therefore,

f(x)>=0 when x in ]-oo, -2/3 ] uu ] 5, +oo[