How do you solve #((5, 1, 4), (2, -3, -4), (7, 2, -6))X=((5), (2), (5))#?
1 Answer
Explanation:
Starting with the augmented matrix:
#((5,1,4,|,5),(2,-3,-4,|,2),(7,2,-6,|,5))#
Perform a sequence of row operations until the left hand side
Subtract row 1 and 2 from row 3 to get:
#((5,1,4,|,5),(2,-3,-4,|,2),(0,4,-6,|,-2))#
Divide row 1 by
#((1,1/5,4/5,|,1),(2,-3,-4,|,2),(0,4,-6,|,-2))#
Subtract twice row 1 from row 2 to get:
#((1,1/5,4/5,|,1),(0,-17/5,-28/5,|,0),(0,4,-6,|,-2))#
Multiply row
#((1,1/5,4/5,|,1),(0,1,28/17,|,0),(0,4,-6,|,-2))#
Subtract
#((1,1/5,4/5,|,1),(0,1,28/17,|,0),(0,0,-214/17,|,-2))#
Multiply row
#((1,1/5,4/5,|,1),(0,1,28/17,|,0),(0,0,1,|,17/107))#
Subtract
#((1,0,8/17,|,1),(0,1,28/17,|,0),(0,0,1,|,17/107))#
Subtract
#((1,0,0,|,99/107),(0,1,28/17,|,0),(0,0,1,|,17/107))#
Subtract
#((1,0,0,|,99/107),(0,1,0,|,-28/107),(0,0,1,|,17/107))#
So:
#X = ((99/107),(-28/107),(17/107))#