How do you solve 4/(x-3)<2 using a sign chart?

1 Answer
Feb 15, 2017

The answer is x in ]-oo, 3[uu]5, +oo[

Explanation:

Let's rearrange the equation

4/(x-3)-2<0

(4-2(x-3))/(x-3)<0

(4-2x+6)/(x-3)<0

(10-2x)/(x-3)<0

Let f(x)=(10-2x)/(x-3)

The domain of f(x) is D_f(x)=RR-{3}

Now, we build the sign chart

color(white)(aaaa)xcolor(white)(aaaaa)-oocolor(white)(aaaaa)3color(white)(aaaaaaa)5color(white)(aaaaaa)+oo

color(white)(aaaa)x-3color(white)(aaaaa)-color(white)(aaa)||color(white)(aaaa)+color(white)(aaaa)+

color(white)(aaaa)10-2xcolor(white)(aaaa)+color(white)(aa)||color(white)(aaaa)+color(white)(aaaa)-

color(white)(aaaa)f(x)color(white)(aaaaaaa)-color(white)(aa)||color(white)(aaaa)+color(white)(aaaa)-

Therefore,

f(x)<0 when x in ]-oo, 3[uu]5, +oo[