How do you solve 3^x + 4 = 7^x - 1 ?

1 Answer
Oct 8, 2016

x approx 1.08777

Explanation:

Calling

f(x) = 7^x-3^x-5 Expanding in Taylor series around x_0

f(x) approx f(x_0)+((df)/(dx))_(x_0)(x-x_0)

or

f(x_1) approx f(x_0)+((df)/(dx))_(x_0)(x_1-x_0)

If x_0 is near a function zero, then f(x_1) approx 0 so

x_(k+1)=x_k-f(x_k)/((df)/(dx))_(x_k)

Here

((df)/(dx))_(x_k)=7^(x_k) Log(7)-3^(x_k) Log(3)

Begining with x_0 = 1 we have

x_0=1
x_1=1.09685
x_2=1.08786
x_3=1.08777
x_4=1.08777