How do you solve 3/(x-2)<5/(x+2) using a sign chart?

1 Answer
Mar 6, 2017

The solution is x in ]-2,2 [ uu ]8, +oo [

Explanation:

We cannot do crossing over

Let's simplify the inequality

3/(x-2)<5/(x+2)

3/(x-2)-5/(x+2)<0

(3(x+2)-5(x-2))/((x-2)(x+2))<0

(3x+6-5x+10)/((x-2)(x+2))<0

(16-2x)/((x-2)(x+2))<0

(2(8-x))/((x-2)(x+2))<0

Let f(x)=(2(8-x))/((x-2)(x+2))

We, now, build the sign chart

color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaa)-2color(white)(aaaaaaaaa)2color(white)(aaaaaa)8color(white)(aaaaaaa)+oo

color(white)(aaaa)x+2color(white)(aaaa)-color(white)(aaa)||color(white)(aaaa)+color(white)(aaa)||color(white)(aaa)+color(white)(aaaa)+

color(white)(aaaa)x-2color(white)(aaaa)-color(white)(aaa)||color(white)(aaaa)-color(white)(aaa)||color(white)(aaa)+color(white)(aaaa)+

color(white)(aaaa)8-xcolor(white)(aaaa)+color(white)(aaa)||color(white)(aaaa)+color(white)(aaa)||color(white)(aaa)+color(white)(aaaa)-

color(white)(aaaa)f(x)color(white)(aaaaa)+color(white)(aaa)||color(white)(aaaa)-color(white)(aaa)||color(white)(aaa)+color(white)(aaaa)-

Therefore,

f(x)<0 when x in ]-2,2 [ uu ]8, +oo [