How do you solve: 3^(2-x) = 4^(2x-5) using logs?

1 Answer
Feb 13, 2016

#x=2.1#

Explanation:

As #3^(2-x) = 4^(2x-5)#

#log(3^(2-x))=log(4^(2x-5))#

or #(2-x)log 3=(2x-5)log4#

or #(2-x)/(2x-5)=log4/log3=0.6020-0.4771=0.1249#

Hence #2-x=0.1249(2x-5)=0.2498x-0.6245#

or #1.2498x=2.6245#

or #x=2.6245/1.2498=2.1#