I assume that #-2# means #-2y#
Before performing the sign chart, we need the roots of the polynomial
Let #f(y)=2y^3-y^2-2y+1#
#f(1)=2-1-2+1=0#
Therefore,
#(y-1)# is a factor of the polynomial
Therefore,
#2y^3-y^2-2y+1=(y-1)(ay^2+by+c)#
#=ay^3+by^2+cy-ay^2-by-c#
Comparing the coefficients
#a=2#
#b-a=-1#, #=>#, #b=a-1=2-1=1#
#c-b=-2#, #=>#, #c=b-2=1-2=-1#
Therefore,
#2y^3-y^2-2y+1=(y-1)(2y^2+y-1)=(y-1)(2y-1)(y+1)#
We can build the sign chart
#color(white)(aaaa)##y##color(white)(aaaaa)##-oo##color(white)(aaaaa)##-1##color(white)(aaaaaaa)##1/2##color(white)(aaaaaa)##1##color(white)(aaaaaa)##+oo#
#color(white)(aaaa)##y+1##color(white)(aaaaaa)##-##color(white)(aaa)##0##color(white)(aaaa)##+##color(white)(aaaa)##+##color(white)(aaaaaa)##+#
#color(white)(aaaa)##2y-1##color(white)(aaaaa)##-##color(white)(aaa)####color(white)(aaaaa)##-##color(white)(a)##0##color(white)(aa)##+##color(white)(aaaaaa)##+#
#color(white)(aaaa)##y-1##color(white)(aaaaaa)##-##color(white)(aaa)####color(white)(aaaaa)##-##color(white)(aaa)####color(white)(a)##-##color(white)(aa)##0##color(white)(aaa)##+#
#color(white)(aaaa)##f(y)##color(white)(aaaaaaa)##-##color(white)(aaa)##0##color(white)(aaaa)##+##color(white)(a)##0##color(white)(a)##-##color(white)(aaa)##0##color(white)(aaaa)##+#
Therefore,
#f(y)<=0# when #y in (-oo,-1]uu[1/2,1]#
graph{2x^3-x^2-2x+1 [-5.55, 5.55, -2.773, 2.776]}