Let's rewrite the equation
2x+2>x^2
x^2-2x-2<0
The roots of the equation
x^2-2x-2=0
are x_1 and x_2
x_2=(2+sqrt(2^2-(4*1*-2)))/2=(2+sqrt12)/2=(2+2sqrt3)/2=1+sqrt3
x_1=(2-sqrt(2^2-(4*1*-2)))/2=(2-sqrt12)/2=(2-2sqrt3)/2=1-sqrt3
Let f(x)=x^2-2x-2
We build the sign chart
color(white)(aaaa)xcolor(white)(aaaaaa)-oocolor(white)(aaaa)x_1color(white)(aaaa)x_2color(white)(aaaa)+oo
color(white)(aaaa)x-x_1color(white)(aaaaaa)-color(white)(aaaa)+color(white)(aaaa)+
color(white)(aaaa)x-x_2color(white)(aaaaaa)-color(white)(aaaa)-color(white)(aaaa)+
color(white)(aaaa)f(x)color(white)(aaaaaaaa)+color(white)(aaaa)-color(white)(aaaa)+
Therefore,
f(x)<0, when x in (x_1,x_2)