How do you solve 2x+2>x^2 using a sign chart?

1 Answer
May 23, 2017

The solution is x in (1-sqrt3, 1+sqrt3)

Explanation:

Let's rewrite the equation

2x+2>x^2

x^2-2x-2<0

The roots of the equation

x^2-2x-2=0

are x_1 and x_2

x_2=(2+sqrt(2^2-(4*1*-2)))/2=(2+sqrt12)/2=(2+2sqrt3)/2=1+sqrt3

x_1=(2-sqrt(2^2-(4*1*-2)))/2=(2-sqrt12)/2=(2-2sqrt3)/2=1-sqrt3

Let f(x)=x^2-2x-2

We build the sign chart

color(white)(aaaa)xcolor(white)(aaaaaa)-oocolor(white)(aaaa)x_1color(white)(aaaa)x_2color(white)(aaaa)+oo

color(white)(aaaa)x-x_1color(white)(aaaaaa)-color(white)(aaaa)+color(white)(aaaa)+

color(white)(aaaa)x-x_2color(white)(aaaaaa)-color(white)(aaaa)-color(white)(aaaa)+

color(white)(aaaa)f(x)color(white)(aaaaaaaa)+color(white)(aaaa)-color(white)(aaaa)+

Therefore,

f(x)<0, when x in (x_1,x_2)