How do you solve 2x^2-8x+3<0 using a sign chart?

1 Answer
Feb 24, 2017

The solution is x in ](4-sqrt10)/2, (4+sqrt10)/2[

Explanation:

We need the roots of the equation before building the sign chart

2x^2-8x+3=0

We calculate the discriminant

Delta=b^2-4ac=(-8)^2-4(2)(3)

=64-24=40

Delta>0, there are 2 real roots

x_1=(8-sqrt40)/4=(4-sqrt10)/2

x_2=(8+sqrt40)/4=(4+sqrt10)/2

Let f(x)=(x-x_1)(x-x_2)

We can, now, build the sign chart

color(white)(aaaa)xcolor(white)(aaaaaa)-oocolor(white)(aaaa)x_1color(white)(aaaa)x_2color(white)(aaaa)+oo

color(white)(aaaa)x-x_1color(white)(aaaaaa)-color(white)(aaaa)+color(white)(aaaa)+

color(white)(aaaa)x-x_2color(white)(aaaaaa)-color(white)(aaaa)-color(white)(aaaa)+

color(white)(aaaa)f(x)color(white)(aaaaaaaa)+color(white)(aaaa)-color(white)(aaaa)+

Therefore,

f(x)<0 when x in ]x_1,x_2[, =>

x in ](4-sqrt10)/2, (4+sqrt10)/2[