How do you solve 2x^2-7x+12=02x2−7x+12=0 by completing the square?
1 Answer
Nov 16, 2016
x=7/4+-(isqrt(-47))/4x=74±i√−474
Explanation:
Given -
2x^2-7x+12=02x2−7x+12=0
2x^2-7x=-122x2−7x=−12
Divide both sides by22
(cancel(2)x^2)/cancel(2)-7/2x=(-12)/2
x^2-7/2x=-6
Divide7/2 by2 , square it and add it to both sides
x^2-7/2*1/2*x +49/16=-6+49/16
x^2-7/4+49/16=-6+49/16
x^2-7/4+49/16=(-96+49)/16
(x-7/4)^2=(-47)/16
x-7/4=+-sqrt((-47)/16)
x=7/4+-(isqrt(-47))/4