How do you solve 2x^2-6x+3>=0 using a sign chart?

1 Answer
Jun 28, 2017

The solution is x in (-oo,(3-sqrt3)/2] uu [(3+sqrt3)/2,+oo)

Explanation:

We need the roots of the equation

2x^2-6x+3=0

The discriminant is

Delta=b^2-4ac=6^2-4*2*3=36-24=12

As, Delta>0, there are 2 real roots

x_1=(6-sqrt12)/(2*2)=(6-2sqrt3)/(4)=(3-sqrt3)/(2)

x_2=(6+sqrt12)/(2*2)=(6+sqrt3)/(4)=(3+sqrt3)/(2)

Let our inequality be

f(x)=(x-x_1)(x-x_2)

We can build the sign chart

color(white)(aaaa)xcolor(white)(aaaaaa)-oocolor(white)(aaaa)x_1color(white)(aaaa)x_2color(white)(aaaa)+oo

color(white)(aaaa)x-x_1color(white)(aaaaaa)-color(white)(aaaa)+color(white)(aaaa)+

color(white)(aaaa)x-x_2color(white)(aaaaaa)-color(white)(aaaa)-color(white)(aaaa)+

color(white)(aaaa)f(x)color(white)(aaaaaaaa)+color(white)(aaaa)-color(white)(aaaa)+

Therefore,

f(x)>=0 when x in (-oo,(3-sqrt3)/2] uu [(3+sqrt3)/2,+oo)
graph{2x^2-6x+3 [-4.93, 4.934, -2.465, 2.465]}