We need the roots of the equation
2x^2-6x+3=0
The discriminant is
Delta=b^2-4ac=6^2-4*2*3=36-24=12
As, Delta>0, there are 2 real roots
x_1=(6-sqrt12)/(2*2)=(6-2sqrt3)/(4)=(3-sqrt3)/(2)
x_2=(6+sqrt12)/(2*2)=(6+sqrt3)/(4)=(3+sqrt3)/(2)
Let our inequality be
f(x)=(x-x_1)(x-x_2)
We can build the sign chart
color(white)(aaaa)xcolor(white)(aaaaaa)-oocolor(white)(aaaa)x_1color(white)(aaaa)x_2color(white)(aaaa)+oo
color(white)(aaaa)x-x_1color(white)(aaaaaa)-color(white)(aaaa)+color(white)(aaaa)+
color(white)(aaaa)x-x_2color(white)(aaaaaa)-color(white)(aaaa)-color(white)(aaaa)+
color(white)(aaaa)f(x)color(white)(aaaaaaaa)+color(white)(aaaa)-color(white)(aaaa)+
Therefore,
f(x)>=0 when x in (-oo,(3-sqrt3)/2] uu [(3+sqrt3)/2,+oo)
graph{2x^2-6x+3 [-4.93, 4.934, -2.465, 2.465]}