How do you solve #2x^2-4x-5>0# by algebraically?
1 Answer
Aug 21, 2017
Explanation:
#"obtain the roots of the left side"#
#2x^2-4x-5rarra=2,b=-4,c=-5#
#x=(4+-sqrt(16+40))/4#
#rArrx=1+-1/2sqrt14#
#rArrx~~ -0.87" or "x~~ 2.87#
#"since "a>0" then parabola has a minimum turning point"#
#"y-intercept "=(0,-5)#
#"graphing the parabola"#
graph{2x^2-4x-5 [-10, 10, -5, 5]}
#"for "2x^2-4x-5>0#
#"consider where the graph is above the x-axis"#
#rArr(-oo,-0.87)uu(2.87,+oo)#