Let`s rewrite the equation
2x^2+4x-3<=0
We need the roots of the equation
2x^2+4x-3=0
We calculate the discriminant
Delta=b^2-4ac=16+4*2*3=40
As Delta>0, there are 2 real roots
Therefore,
x_1=(-4+sqrt40)/4=0.58
x_2=(-4-sqrt40)/4=-2.58
Let f(x)=(x+2.58)(x-0.58)<=0
Now, we can do our sign chart
color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaa)-2.58color(white)(aaaaa)0.58color(white)(aaaa)+oo
color(white)(aaaa)x+2.58color(white)(aaaa)-color(white)(aaaaa)+color(white)(aaaaaa)+
color(white)(aaaa)x-0.58color(white)(aaaa)-color(white)(aaaaa)-color(white)(aaaaaa)+
color(white)(aaaa)f(x)color(white)(aaaaaaaa)+color(white)(aaaaa)-color(white)(aaaaaa)+
Therefore,
f(x)<=0, when x in [-2.58, 0.58]