How do you solve 2u^2+5u>=12 using a sign chart?

1 Answer
Nov 28, 2017

The solution is u in (-oo,-4] uu [3/2, +oo)

Explanation:

Lets 's factorise the function

f(u)=2u^2+5u-12=(2u-3)(u+4)

The equation we have to solve is

f(u)=(2u-3)(u+4)>=0

Let's build the sign chart

color(white)(aaaa)ucolor(white)(aaaa)-oocolor(white)(aaaa)-4color(white)(aaaaaaaaaa)3/2color(white)(aaaaa)+oo

color(white)(aaaa)u+4color(white)(aaaaaa)-color(white)(aa)0color(white)(aaaa)+color(white)(aaaaaaa)+

color(white)(aaaa)2u-3color(white)(aaaaa)-color(white)(aa)#color(white)(aaaaa)-#color(white)(aaaa)0color(white)(aaa)+

color(white)(aaaa)f(u)color(white)(aaaaaaa)+color(white)(aa)0color(white)(aaaa)-color(white)(aaaa)0color(white)(aaa)+

Therefore,

f(u)>=0 when u in (-oo,-4] uu [3/2, +oo)

graph{2x^2+5x-12 [-29.27, 28.45, -13.66, 15.22]}