How do you solve (2t+7)/(t-4)>=3 using a sign chart?

1 Answer
Feb 9, 2017

The solution is t in ]4, 19]

Explanation:

Rewrite the equation

(2t+7)/(t-4)>=3

(2t+7)/(t-4)-3>=0

((2t+7)-3(t-4))/(t-4)>=0

(2t+7-3t+12)/(t-4)>=0

(-t+19)/(t-4)>=0

Let f(t)=(-t+19)/(t-4)

We can construct the sign chart

color(white)(aaaa)tcolor(white)(aaaa)-oocolor(white)(aaaaaaa)4color(white)(aaaaaaaa)19color(white)(aaaaaa)+oo

color(white)(aaaa)t-4color(white)(aaaaa)-color(white)(aaaa)||color(white)(aaaa)+color(white)(aaaaa)+

color(white)(aaaa)19-tcolor(white)(aaaa)+color(white)(aaaa)||color(white)(aaaa)+color(white)(aaaaa)-

color(white)(aaaa)f(t)color(white)(aaaaaa)-color(white)(aaaa)||color(white)(aaaa)+color(white)(aaaaa)-

Therefore,

f(t)>=0 when t in ]4, 19]