Let's rearrange and factorise the inequality
2sin^2x>=sinx
2sin^2x-sinx>=0
sinx(2sinx-1)>=0
Let f(x)=sinx(2sinx-1)
We need to find the important points for the sign chart
sinx=0, =>, x=0,pi,2pi
sinx=1/2, =>, x=pi/6, 5pi/6
Now, we can build the sign chart
color(white)(aaaa)xcolor(white)(aaaaaaaaaa)0color(white)(aaaa)pi/6color(white)(aaaa)5/6picolor(white)(aaaaaaaa)picolor(white)(aaaaaa)2pi
color(white)(aaaa)sinxcolor(white)(aaaaaaaaa)+color(white)(aaaa)+color(white)(aaaa)#color(white)(aaa)+#color(white)(aaaaa)-
color(white)(aaaa)2sinx-1color(white)(aaaa)-color(white)(aaaa)+color(white)(aaaa)#color(white)(aaa)-#color(white)(aaaaa)-
color(white)(aaaa)f(x)color(white)(aaaaaaaaa)-color(white)(aaaa)+color(white)(aaaa)#color(white)(aaa)-#color(white)(aaaaa)+
Therefore,
f(x)>=0 when x in [pi/6, 5/6pi]uu [pi,2pi]
The solution is [pi/6+2kpi, 5/6pi+2kpi]uu[pi+2kpi, 2pi +2kpi]
kin ZZ