How do you solve 2sin^2x>=sinx using a sign chart?

1 Answer
Mar 7, 2017

The solution is [pi/6+2kpi, 5/6pi+2kpi]uu[pi+2kpi, 2pi +2kpi]
k in ZZ

Explanation:

Let's rearrange and factorise the inequality

2sin^2x>=sinx

2sin^2x-sinx>=0

sinx(2sinx-1)>=0

Let f(x)=sinx(2sinx-1)

We need to find the important points for the sign chart

sinx=0, =>, x=0,pi,2pi

sinx=1/2, =>, x=pi/6, 5pi/6

Now, we can build the sign chart

color(white)(aaaa)xcolor(white)(aaaaaaaaaa)0color(white)(aaaa)pi/6color(white)(aaaa)5/6picolor(white)(aaaaaaaa)picolor(white)(aaaaaa)2pi

color(white)(aaaa)sinxcolor(white)(aaaaaaaaa)+color(white)(aaaa)+color(white)(aaaa)#color(white)(aaa)+#color(white)(aaaaa)-

color(white)(aaaa)2sinx-1color(white)(aaaa)-color(white)(aaaa)+color(white)(aaaa)#color(white)(aaa)-#color(white)(aaaaa)-

color(white)(aaaa)f(x)color(white)(aaaaaaaaa)-color(white)(aaaa)+color(white)(aaaa)#color(white)(aaa)-#color(white)(aaaaa)+

Therefore,

f(x)>=0 when x in [pi/6, 5/6pi]uu [pi,2pi]

The solution is [pi/6+2kpi, 5/6pi+2kpi]uu[pi+2kpi, 2pi +2kpi]

kin ZZ