How do you solve 2^x = 1/322x=132?

1 Answer
Jun 20, 2016

Real solution: x = -5x=5

Complex solutions: x = -5 + (2kpi)/ln(2) ix=5+2kπln(2)i for any integer kk

Explanation:

32 = 2^532=25

We are given:

2^x = 1/32 = 1/(2^5) = 2^-52x=132=125=25

So the unique Real solution is x = -5x=5

color(white)()
Complex solutions

e^(2pii) = 1e2πi=1

So:

2^x = 2^-5*e^(2kpii) = 2^(-5)*2^((2kpi)/ln(2) i) = 2^(-5+(2kpi)/ln(2)i2x=25e2kπi=2522kπln(2)i=25+2kπln(2)i

So x = -5 +(2kpi)/ln(2) ix=5+2kπln(2)i for any integer kk