How do you solve #((2, 0, 0), (-1, 2, 0), (-2, 4, 1))x=((4), (10), (11))#?
2 Answers
#x = ((2), (6), (-9))#
Explanation:
First construct the inverse matrix of
#((2, 0, 0, |, 1, 0, 0), (-1, 2, 0, |, 0, 1, 0), (-2, 4, 1, |, 0, 0, 1))#
Add row
#((2, 0, 0, |, 1, 0, 0), (-1, 2, 0, |, 0, 1, 0), (0, 4, 1, |, 1, 0, 1))#
Divide row
#((1, 0, 0, |, 1/2, 0, 0), (-1, 2, 0, |, 0, 1, 0), (0, 4, 1, |, 1, 0, 1))#
Add row
#((1, 0, 0, |, 1/2, 0, 0), (0, 2, 0, |, 1/2, 1, 0), (0, 4, 1, |, 1, 0, 1))#
Subtract
#((1, 0, 0, |, 1/2, 0, 0), (0, 2, 0, |, 1/2, 1, 0), (0, 0, 1, |, 0, -2, 1))#
Divide row
#((1, 0, 0, |, 1/2, 0, 0), (0, 1, 0, |, 1/4, 1/2, 0), (0, 0, 1, |, 0, -2, 1))#
So:
#((2, 0, 0), (-1, 2, 0), (-2, 4, 1))^(-1) = ((1/2, 0, 0), (1/4, 1/2, 0), (0, -2, 1))#
Then multiply the right hand side column matrix by our inverse matrix to find:
#x = ((1/2, 0, 0), (1/4, 1/2, 0), (0, -2, 1))((4),(10),(11)) = ((2), (6), (-9))#
#x = ((2), (6), (-9))#
Explanation:
Alternatively, don't bother to construct an inverse matrix: Just perform a similar sequence of steps with the target column matrix appended to our original matrix as follows:
#((2, 0, 0, |, 4 ), (-1, 2, 0, |, 10), (-2, 4, 1, |, 11))#
Add row
#((2, 0, 0, |, 4 ), (-1, 2, 0, |, 10), (0, 4, 1, |, 15))#
Divide row
#((1, 0, 0, |, 2 ), (-1, 2, 0, |, 10), (0, 4, 1, |, 15))#
Add row
#((1, 0, 0, |, 2 ), (0, 2, 0, |, 12), (0, 4, 1, |, 15))#
Subtract
#((1, 0, 0, |, 2 ), (0, 2, 0, |, 12), (0, 0, 1, |, -9))#
Divide row
#((1, 0, 0, |, 2 ), (0, 1, 0, |, 6), (0, 0, 1, |, -9))#
Having reached the identity matrix on the left hand side, we can read off the solution from the right hand side:
#x = ((2), (6), (-9))#