How do you solve 16-x^2>0 using a sign chart?

1 Answer
May 11, 2017

The solution is x in (-4,+4)

Explanation:

We need

a^2-b^2=(a+b)(a-b)

We factorise the inequality

16-x^2>0

(4+x)(4-x)>0

Let

f(x)=(4+x)(4-x)

We can build the sign chart

color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaa)-4color(white)(aaaa)+4color(white)(aaaa)+oo

color(white)(aaaa)4+xcolor(white)(aaaaaa)-color(white)(aaaa)+color(white)(aaaa)+

color(white)(aaaa)4-xcolor(white)(aaaaaa)+color(white)(aaaa)+color(white)(aaaa)-

color(white)(aaaa)f(x)color(white)(aaaaaaa)-color(white)(aaaa)+color(white)(aaaa)-

Therefore,

f(x)>0 when x in (-4,+4)