To simplify the expression, we cannot do crossing over
1/(x+2)>=1/3
1/(x+2)-1/3>=0
(3-(x+2))/(3(x+2))>=0
(3-x-2)/(3(x+2))=(1-x)/(3(x+2))>=0
Let f(x)=(1-x)/(3(x+2))
The domain of f(x) is D_f(x)=RR-{-2}
Now, we can do the sign chart
color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaa)-2color(white)(aaaaaaaaa)1color(white)(aaaa)+oo
color(white)(aaaa)x+2color(white)(aaaaa)-color(white)(aa)∥color(white)(aaaa)+color(white)(aaaa)+
color(white)(aaaa)1-xcolor(white)(aaaaa)+color(white)(aa)∥color(white)(aaaa)+color(white)(aaaa)-
color(white)(aaaa)f(x)color(white)(aaaaaa)-color(white)(aa)∥color(white)(aaaa)+color(white)(aaaa)-
Therefore,
f(x)>=0, when x in ] -2,1 ]