How do you solve 1/x^2-1<=0 using a sign chart?

1 Answer
Aug 6, 2017

The solution is x in (-oo,-1]uu[1,+oo)

Explanation:

Let's rearrange the equation

1/x^2-1<=0

(1-x^2)/x^2<=0

((1+x)(1-x))/(x^2)<=0

Let f(x)=((1+x)(1-x))/(x^2)

We build the sign chart

color(white)(aaaa)xcolor(white)(aaaaa)-oocolor(white)(aaaa)-1color(white)(aaaaaa)0color(white)(aaaaaaaaa)1color(white)(aaaaaa)+oo

color(white)(aaaa)1+xcolor(white)(aaaaaa)-color(white)(aa)0color(white)(aa)+color(white)(aa)||color(white)(aaaa)+color(white)(aaaaaaa)+

color(white)(aaaa)1-xcolor(white)(aaaaaa)+color(white)(aa)color(white)(aaa)+color(white)(aa)||color(white)(aaaa)+color(white)(aaa)0color(white)(aaa)-

color(white)(aaaa)f(x)color(white)(aaaaaaa)-color(white)(aa)0color(white)(aa)+color(white)(aa)||color(white)(aaaa)+color(white)(aaa)0color(white)(aaa)-

Therefore,

f(x)<=0 when x in (-oo,-1]uu[1,+oo)

graph{1/x^2-1 [-7.02, 7.024, -3.51, 3.51]}