We cannot do crossing over
Let's rearrange the equation
#1/(x+1)>2/(x-1)#
#2/(x-1)-1/(x+1)<0#
#(2x+2-x+1)/((x+1)(x-1))<0#
#(x+3)/((x+1)(x-1))<0#
Let #f(x)=(x+3)/((x+1)(x-1))#
We can build the sign chart
#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaa)##-3##color(white)(aaaaaaa)##-1##color(white)(aaaaaaa)##1##color(white)(aaaaaaa)##+oo#
#color(white)(aaaa)##x+3##color(white)(aaaaa)##-##color(white)(aaaaa)##+##color(white)(aaaa)##||##color(white)(aa)##+##color(white)(aaa)##||##color(white)(aaaa)##+#
#color(white)(aaaa)##x+1##color(white)(aaaaa)##-##color(white)(aaaaa)##-##color(white)(aaaa)##||##color(white)(aa)##+##color(white)(aaa)##||##color(white)(aaaa)##+#
#color(white)(aaaa)##x-1##color(white)(aaaaa)##-##color(white)(aaaaa)##-##color(white)(aaaa)##||##color(white)(aa)##-##color(white)(aaa)##||##color(white)(aaaa)##+#
#color(white)(aaaa)##f(x)##color(white)(aaaaaa)##-##color(white)(aaaaa)##+##color(white)(aaaa)##||##color(white)(aa)##-##color(white)(aaa)##||##color(white)(aaaa)##+#
Therefore,
#f(x)<0# when #x in ]-oo, -3[uu]-1,1[#