Let's rearrange the inequality
1/2x^2<= x+12
1/2x^2- x-12<=0
x^2- 2x-24 <=0
Factorising, we get
(x+4)(x-6) <=0
Let, f(x)=(x+4)(x-6)
We can build the sign chart
color(white)(aaaa)xcolor(white)(aaaa)+oocolor(white)(aaaaa)-4color(white)(aaaaaa)6color(white)(aaaa)+oo
color(white)(aaaa)x+4color(white)(aaaaaa)-color(white)(aa)0color(white)(aaa)+color(white)(aaaa)+
color(white)(aaaa)x-6color(white)(aaaaaa)-color(white)(aa)color(white)(aaaa)-color(white)(a)0color(white)(aa)+
color(white)(aaaa)f(x)color(white)(aaaaaaa)+color(white)(aa)0color(white)(aaa)-color(white)(a)0color(white)(aa)+
Therefore,
f(x) <=0 when x in [-4 ,6]
graph{1/2x^2-x-12 [-16.22, 15.8, -12.55, 3.47]}