How do you solve 1/2x^2<=x+12 using a sign chart?

1 Answer
Aug 9, 2017

The solution is x in [-4 ,6]

Explanation:

Let's rearrange the inequality

1/2x^2<= x+12

1/2x^2- x-12<=0

x^2- 2x-24 <=0

Factorising, we get

(x+4)(x-6) <=0

Let, f(x)=(x+4)(x-6)

We can build the sign chart

color(white)(aaaa)xcolor(white)(aaaa)+oocolor(white)(aaaaa)-4color(white)(aaaaaa)6color(white)(aaaa)+oo

color(white)(aaaa)x+4color(white)(aaaaaa)-color(white)(aa)0color(white)(aaa)+color(white)(aaaa)+

color(white)(aaaa)x-6color(white)(aaaaaa)-color(white)(aa)color(white)(aaaa)-color(white)(a)0color(white)(aa)+

color(white)(aaaa)f(x)color(white)(aaaaaaa)+color(white)(aa)0color(white)(aaa)-color(white)(a)0color(white)(aa)+

Therefore,

f(x) <=0 when x in [-4 ,6]

graph{1/2x^2-x-12 [-16.22, 15.8, -12.55, 3.47]}