How do you solve 1/2x^2>=4-x using a sign chart?

1 Answer
May 15, 2017

Solution: x<=-4 and x>=2 or (-oo, -4] uu [2,oo)

Explanation:

1/2 x^2 >= 4-x or x^2 >= 8- 2x or x^2 +2x -8 >=0 or

x^2 +4x-2x -8 >=0 or x(x+4) -2 (x+4) >= 0 or (x+4)(x-2) >=0

Critical points are x= -4 , x=2

Sign chart:
When x < -4 (x+4) (x-2) is (-)*(-) = (+) , >0

When -4 < x < 2 (x+4)(x-2) is (+)*(-)= - <0

When x > 2 (x+4) (x-2) is (+)*(+) = (+) >0

Solution x<=-4 and x>=2 or (-oo, -4] uu [2,oo) [Ans]