0.23x^2+6.5x+4.3<00.23x2+6.5x+4.3<0
Comparing with standard quadratic equation ax^2+bx+c=0ax2+bx+c=0
a= 0.23 ,b=6.5 ,c=4.3a=0.23,b=6.5,c=4.3 Discriminant D= b^2-4acD=b2−4ac or
D ~~ 38.29D≈38.29 If discriminant positive, we get two real solutions,
Quadratic formula: x= (-b+-sqrtD)/(2a) x=−b±√D2aor
x= (-6.5+-sqrt38.29)/(2*0.23) :. x ~~ -27.58 , x ~~ -0.68
0.23x^2+6.5x+4.3<0 or
f(x)=0.23 (x +27.58)(x+0.68) <0 .
Critical points are x ~~ -27.58 , x ~~ -0.68
Sign chart: When x< -27.58 sign of f(x) is (-) * (-) = (+) ; > 0
When -27.58 < x < -0.68 sign of f(x) is (+) * (-) = (-) ; < 0
When x > -0.68 sign of f(x) is (+) * (+) = (+) ; > 0
Solution : -27.58 < x < -0.68 or x| (-27.58,-0.68)
graph{0.23x^2+6.5x+4.3 [-160, 160, -80, 80]}
[Ans]