How do you simplify #(xy)^pi#?

1 Answer
Sep 10, 2017

See a solution process below:

Explanation:

We can rewrite the expression within the parenthesis using this rule of exponents:

#a = a^color(red)(1)#

#(xy)^pi => (x^color(red)(1)y^color(red)(1))^pi#

We can now eliminate the outer exponent using this rule of exponents:

#(x^color(red)(a))^color(blue)(b) = x^(color(red)(a) xx color(blue)(b))#

#(x^color(red)(1)y^color(red)(1))^color(blue)(pi) => x^(color(red)(1)xxcolor(blue)(pi))y^(color(red)(1)xxcolor(blue)(pi)) => x^piy^pi#