How do you simplify (x^3)^4(x3)4?

2 Answers
Mar 2, 2018

You have to follow exponent laws in order to find the answer.

Explanation:

(x^3)^4(x3)4
Becomes:

x^(3*4)x34

= x^12=x12

Mar 2, 2018

The answer is x^12x12.

Explanation:

Write out the whole power of 44, then add up the exponents using the exponent addition rule. I color-coded some of the problem so that it is easier to see:

color(white)=(x^3)^4=(x3)4

=(x^color(red)3)(x^color(yellow)3)(x^color(green)3)(x^color(blue)3)=(x3)(x3)(x3)(x3)

=x^color(red)3*x^color(yellow)3*x^color(green)3*x^color(blue)3=x3x3x3x3

=x^(color(red)3+color(yellow)3)*x^color(green)3*x^color(blue)3=x3+3x3x3

=x^color(orange)6*x^color(green)3*x^color(blue)3=x6x3x3

=x^(color(orange)6+color(green)3)*x^color(blue)3=x6+3x3

=x^color(brown)9*x^color(blue)3=x9x3

=x^(color(brown)9+color(blue)3)=x9+3

=x^12=x12