How do you simplify the expression tan^2x/(secx+1)?
2 Answers
Sep 1, 2016
Sep 1, 2016
Explanation:
Use the
color(blue)"trigonometric identity" fortan^2x
color(orange)"Reminder " color(red)(|bar(ul(color(white)(a/a)color(black)(tan^2x=sec^2x-1)color(white)(a/a)|)))
rArr(tan^2x)/(secx+1)=(sec^2x-1)/(secx+1)........ (A) Note that
sec^2x-1" is a difference of squares" and in general, factorises as.
color(red)(|bar(ul(color(white)(a/a)color(black)(a^2-b^2=(a-b)(a+b))color(white)(a/a)|)))
(secx)^2=sec^2x" and " (1)^2=1rArra=secx" and " b=1
rArrsec^2x-1=(secx-1)(secx+1) substitute into (A)
rArr(sec^2x-1)/(secx+1)=((secx-1)cancel((secx+1)))/cancel(secx+1)
rArr(tan^2x)/(secx+1)=secx-1