How do you simplify the expression tan^2t(csc^2t-1)?

1 Answer
Jan 20, 2017

1.

Explanation:

We use the Identity csc^2t=1=cot^2t to get,

tan^2t(csc^2t-1)=(tan^2t)(cot^2t)=1.

Otherwise , substituting sint/cost" for "tant" and "1/sint" for "csct,

The L.H.S.=(sin^2t/cos^2t){1/sin^2t-1}

={cancel(sin^2t)(1-sin^2t)}/{(cos^2t)cancel(sin^2t)}

=cos^2t/cos^2t

=1.