We have: (sin(theta) + tan(theta)) / (1 + sec(theta))
Let's apply two standard trigonometric identities; tan(theta) = (sin(theta)) / (cos(theta)) and sec(theta) = (1) / (cos(theta)):
= (sin(theta) + (sin(theta)) / (cos(theta))) / (1 + (1) / (cos(theta)))
= ((sin(theta)cos(theta) + sin(theta)) / (cos(theta))) / ((cos(theta) + 1) / (cos(theta)))
= (sin(theta)cos(theta) + sin(theta)) / (cos(theta) + 1)
Let's apply the Pythagorean identity cos^(2)(theta) + sin^(2)(theta) = 1:
= (sin(theta) (cos(theta) + 1)) / (cos(theta) + cos^(2)(theta) + sin^(2)(theta))
We can rearrange the Pythagorean identity to get:
=> sin^(2)(theta) = 1 - cos^(2)(theta)
Let's apply this to get:
= (sin(theta) (cos(theta) + 1)) / (cos(theta) + cos^(2)(theta) + 1 - cos^(2)(theta))
= (sin(theta) (cos(theta) + 1)) / (cos(theta) + 1)
= sin(theta)