How do you simplify the expression sec^2theta-tan^2theta+cot^2theta?

1 Answer
Sep 21, 2016

This expression simplifies to csc^2theta.

Explanation:

Apply the following identities:

sectheta = 1/costheta
tantheta = sintheta/costheta
cottheta = costheta/sintheta

=1/cos^2theta - sin^2theta/cos^2theta + cos^2theta/sin^2theta

=(1 - sin^2theta)/(cos^2theta) + cos^2theta/sin^2theta

Apply the pythagorean identity sin^2x + cos^2x = 1 -> 1 - sin^2x = cos^2x

=cos^2theta/cos^2theta + cos^2theta/sin^2theta

= 1 + cos^2theta/sin^2theta

=(sin^2theta + cos^2theta)/sin^2theta

Apply the identity sin^2beta + cos^2beta = 1:

=1/sin^2theta

Apply the identity 1/sinalpha = cscalpha.

=csc^2theta

Hopefully this helps!