How do you simplify the expression cos^2A(sec^2A-1)cos2A(sec2A1)?

1 Answer
Oct 1, 2016

cos^2 A (sec^2 A - 1) = sin^2 Acos2A(sec2A1)=sin2A

with exclusion A != pi/2 + npiAπ2+nπ for integer values of nn.

Explanation:

Note that:

sec A = 1/(cos A)secA=1cosA

sin^2 A + cos^2 A = 1sin2A+cos2A=1

So we find:

cos^2 A (sec^2 A - 1) = (cos^2 A)/(cos^2 A) - cos^2 Acos2A(sec2A1)=cos2Acos2Acos2A

color(white)(cos^2 A (sec^2 A - 1)) = 1 - cos^2 Acos2A(sec2A1)=1cos2A

color(white)(cos^2 A (sec^2 A - 1)) = sin^2 Acos2A(sec2A1)=sin2A

Note that this identity does not hold for A = pi/2 + npiA=π2+nπ, when sec AsecA is undefined, resulting in the left hand side being undefined but the right hand side defined.