How do you simplify the expression 2sqrt(1/2)+2sqrt2-sqrt8?

1 Answer
May 7, 2017

2sqrt(1/2)+2sqrt2-sqrt8=color(blue)(sqrt2

Explanation:

Simplify.

2sqrt(1/2)+2sqrt2-sqrt8

In order to add or subtract numbers with square roots, the square roots must be the same.

Simplify sqrt8 by prime factorization.

2sqrt(1/2)+2sqrt2-sqrt(2xx2xx2)

2sqrt(1/2)+2sqrt2-sqrt(2^2xx2)

2sqrt(1/2)+2sqrt2-2sqrt2

Simplify sqrt(1/2) to (sqrt1)/(sqrt2).

2xx(sqrt1)/(sqrt2)+2sqrt2-2sqrt2

Simplify sqrt1 to 1.

2xx1/(sqrt2)+2sqrt2-2sqrt2

Rationalize the denominator by multiplying the numerator and denominator by color(red)(sqrt2.

2xx1/(sqrt2)xxcolor(red)(sqrt2)/color(red)(sqrt2)+2sqrt2-2sqrt2

Simplify.

(2xxsqrt2)/(sqrt2xxsqrt2)+2sqrt2-2sqrt2

Simplify.

(2sqrt2)/2+2sqrt2-2sqrt2

Cancel the 2/2.

(color(red)cancel(color(black)(2))sqrt2)/color(red)cancel(color(black)(2))+2sqrt2-2sqrt2

sqrt2+2sqrt2-2sqrt2

Simplify.

3sqrt2-2sqrt2

Answer.

sqrt2