How do you simplify the expression (1+cosx)/sinx+sinx/(1+cosx)?

1 Answer
Aug 30, 2016

The expression can be simplified to 2cscx

Explanation:

Start by putting on a common denominator.

=>((1 + cosx)(1 + cosx))/((sinx)(1 + cosx)) + (sinx(sinx))/((sinx)(1 + cosx))

=>(cos^2x + 2cosx + 1 + sin^2x)/(sinx(1 + cosx))

Apply the pythagorean identity cos^2x + sin^2x = 1:

=>(1 + 2cosx + 1)/(sinx(1 + cosx)

=>(2 + 2cosx)/(sinx(1 + cosx))

Factor out a 2 in the numerator.

=> (2(1 + cosx))/(sinx(1 + cosx))

=>2/sinx

Finally, apply the reciprocal identity 1/sintheta = csctheta to get:

=> 2cscx

Hopefully this helps!