How do you simplify (tanx + 1)^2 cosx?

1 Answer
Sep 6, 2016

secx(1+sin2x)

Explanation:

Let's begin by expanding the bracket.

(tanx+1)^2=tan^2x+2tanx+1

color(orange)"Reminder " color(red)(bar(ul(|color(white)(a/a)color(black)(tanx=(sinx)/(cosx))color(white)(a/a)|)))

rArrtan^2x+2tanx+1=(sin^2x)/(cos^2x)+(2sinx)/cosx+1

substitute this back into the original.

That is (sin^2x/cos^2x+(2sinx)/cosx+1)cosx

distribute the bracket.

rArrsin^2x/cosx+2sinx+cosx

express each term with a common denominator of cosx

=sin^2x/cosx+(2sinxcosx)/cosx+cos^2x/cosx

=(sin^2x+2sinxcosx+cos^2x)/(cosx)........ (A)

color(orange)"Reminder " color(red)(bar(ul(|color(white)(a/a)color(black)(sin^2x+cos^2x=1)|)))

and color(red)(bar(ul(|color(white)(a/a)color(black)(sin2x=2sinxcosx)color(white)(a/a)|)))

Returning to (A)

rArr(1+sin2x)/cosx=1/cosx+(sin2x)/cosx

color(orange)"Reminder " color(red)(bar(ul(|color(white)(a/a)color(black)(secx=1/(cosx))color(white)(a/a)|)))

rArr1/cosx+(sin2x)/cosx=secx+secxsin2x

rArr(tanx+1)^2cosx=secx(1+sin2x)