How do you simplify tan x / (1-cos^2 x)?

2 Answers
Aug 23, 2016

tanx/(1-cos^2x)=1/(sinxcosx)==secxcscx=2csc2x.

Explanation:

tanx/(1-cos^2x)=tanx/sin^2x=(sinx/cosx)/sin^2x=sinx/cosx*1/sin^2x

=1/(sinxcosx), or, =secxcscx

Since,

sin2x=2sinxcosx, "the above can further be expressed as" 2/(2sinxcosx)=2csc2x.

Enjoy Maths.!

Aug 23, 2016

1/(sinxcosx)

Explanation:

tanx=sinx/cosx

The one identity that you need to remember is
sin^2x+cos^2x=1

all the others can be deduced from this

So 1-cos^2x=sin^2x

Therefore the original expression can be written as

sinx/(cosxsin^2x)

Cancelling gives
1/(sinxcosx)