How do you simplify #(sqrtx+sqrty)/(sqrtx-sqrty)#?
2 Answers
Feb 9, 2017
The answer is
Explanation:
Multiply numerator and denominator by
So,
Feb 9, 2017
Explanation:
To "rationalise" the denominator, multiply by its radical conjugate
#(sqrt(x)+sqrt(y))/(sqrt(x)-sqrt(y)) = ((sqrt(x)+sqrt(y))(sqrt(x)+sqrt(y)))/((sqrt(x)-sqrt(y))(sqrt(x)+sqrt(y))#
#color(white)((sqrt(x)+sqrt(y))/(sqrt(x)-sqrt(y))) = (x+2sqrt(x)sqrt(y)+y)/(x-y)#
#color(white)((sqrt(x)+sqrt(y))/(sqrt(x)-sqrt(y))) = (x+2sqrt(xy)+y)/(x-y)#