How do you simplify (sqrta- sqrtb)/(sqrta+sqrtb)?
3 Answers
See a solution process below:
Explanation:
To simplify we need to rationalize the denominator by multiplying by the appropriate form of
Multiply both the numerator and denominator by
Hope this helps :)
Explanation:
"multiply the numerator/denominator by the "color(blue)"conjugate"
"of the denominator"
"the conjugate of "sqrta+sqrtb" is "sqrtacolor(red)(-)sqrtb
•color(white)(x)sqrtaxxsqrta=a
•color(white)(x)(sqrta+sqrtb)(sqrta-sqrtb)=a-b
rArr(sqrta-sqrtb)/(sqrta+sqrtb)xx(sqrta-sqrtb)/(sqrta-sqrtb)
=((sqrta-sqrtb)(sqrta-sqrtb))/((sqrta+sqrtb)(sqrta-sqrtb))
=(a-sqrtab-sqrtab+b)/(a-b)
=(a-2sqrt(ab)+b)/(a-b)