How do you simplify (sqrta-sqrt5)^2?

1 Answer
May 17, 2018

See a solution process below:

Explanation:

The rule for this special form of quadratic equation is:

(color(red)(x) - color(blue)(y))^2 = (color(red)(x) - color(blue)(y))(color(red)(x) - color(blue)(y)) = color(red)(x)^2 - 2color(red)(x)color(blue)(y) + color(blue)(y)^2

Substitute:

color(red)(sqrt(a)) for color(red)(x)

color(blue)(sqrt(5)) for color(blue)(y)

Giving:

(color(red)(sqrt(a)) - color(blue)(sqrt(5)))^2 =>

(color(red)(sqrt(a)) - color(blue)(sqrt(5)))(color(red)(sqrt(a)) - color(blue)(sqrt(5))) =>

(color(red)(sqrt(a)))^2 - 2color(red)(sqrt(a))color(blue)(sqrt(5)) + (color(blue)(sqrt(5)))^2 =>

color(red)(a) - 2sqrt(color(red)(a)color(blue)(5)) + color(blue)(5)