How do you simplify (sqrt75-sqrt27)/sqrt12?

1 Answer
Mar 19, 2018

See a solution process below:

Explanation:

First, rewrite each of the radicals as:

(sqrt(25 * 3) - sqrt(9 * 3))/sqrt(4 * 3)

Next, use this rule for exponents to simplify each of the radicals:

sqrt(color(red)(a) * color(blue)(b)) = sqrt(color(red)(a)) * sqrt(color(blue)(b))

(sqrt(color(red)(25) * color(blue)(3)) - sqrt(color(red)(9) * color(blue)(3)))/sqrt(color(red)(4) * color(blue)(3)) =>

(sqrt(color(red)(25))sqrt(color(blue)(3)) - sqrt(color(red)(9))sqrt(color(blue)(3)))/(sqrt(color(red)(4))sqrt(color(blue)(3))) =>

(5sqrt(color(blue)(3)) - 3sqrt(color(blue)(3)))/(2sqrt(color(blue)(3)))

Next, factor out the common term in the numerator:

((5 - 3)sqrt(color(blue)(3)))/(2sqrt(color(blue)(3))) =>

(2sqrt(color(blue)(3)))/(2sqrt(color(blue)(3))) =>

1