How do you simplify sqrt7(sqrt14 + sqrt3)?

1 Answer
Oct 8, 2017

See a solution process below:

Explanation:

First, expand the terms in parenthesis by multiplying each term within the parenthesis by the term outside the parenthesis:

sqrt( color(red)(7) ) ( sqrt(color(blue)(14)) + sqrt(color(blue)(3)) ) =>

(sqrt(color(red)(7)) xx sqrt(color(blue)(14))) + (sqrt(color(red)(7)) xx sqrt(color(blue)(3)))

Next, we can use this rule for radicals to rewrite the expression:

sqrt(color(red)(a)) * sqrt(color(blue)(b)) = sqrt(color(red)(a) * color(blue)(b))

sqrt(color(red)(7) xx color(blue)(14)) + sqrt(color(red)(7) xx color(blue)(3)) =>

sqrt(98) + sqrt(21)

We can rewrite the term on the left as:

sqrt(49 xx 2) + sqrt(21)

We can use the reverse of the rule above to simplify the term on the left:

sqrt(color(red)(a) * color(blue)(b)) = sqrt(color(red)(a)) * sqrt(color(blue)(b))

sqrt(color(red)(49) xx color(blue)(2)) + sqrt(21) =>

(sqrt(color(red)(49)) xx sqrt(color(blue)(2))) + sqrt(21) =>

(7 xx sqrt(color(blue)(2))) + sqrt(21) =>

7sqrt(color(blue)(2)) + sqrt(21)