How do you simplify sqrt3/(sqrt6 -1) - sqrt3/(sqrt6 + 1)√3√6−1−√3√6+1?
1 Answer
Explanation:
You need to find the least common denominator to be able to subtract the two fractions.
In your case, the least common denominator is
sqrt(3) / (sqrt(6) - 1) - sqrt(3) / (sqrt(6) + 1) = (sqrt(3)color(blue)((sqrt(6) + 1))) / ((sqrt(6) - 1)color(blue)((sqrt(6) + 1))) - (sqrt(3)color(green)((sqrt(6) - 1))) / ((sqrt(6) + 1)color(green)((sqrt(6) - 1))) √3√6−1−√3√6+1=√3(√6+1)(√6−1)(√6+1)−√3(√6−1)(√6+1)(√6−1)
= (sqrt(3)(sqrt(6) + 1) - sqrt(3)(sqrt(6) - 1)) / ((sqrt(6) - 1)(sqrt(6) + 1))=√3(√6+1)−√3(√6−1)(√6−1)(√6+1)
... use the formula
= (sqrt(3) * sqrt(6) + sqrt(3) - sqrt(3) * sqrt(6) + sqrt(3)) / ((sqrt(6))^2 - 1^2)=√3⋅√6+√3−√3⋅√6+√3(√6)2−12
= (cancel(sqrt(3) * sqrt(6)) + sqrt(3) - cancel(sqrt(3) * sqrt(6)) + sqrt(3)) / (6 - 1)
= (2 sqrt(3)) / 5
= 2/5 sqrt(3)