How do you simplify sqrt3/(sqrt6 -1) - sqrt3/(sqrt6 + 1)36136+1?

1 Answer
Feb 8, 2016

(2 sqrt(3)) / 5235

Explanation:

You need to find the least common denominator to be able to subtract the two fractions.

In your case, the least common denominator is (sqrt(6) - 1)(sqrt(6) + 1)(61)(6+1), so you need to expand the first fraction with (sqrt(6) + 1)(6+1) and the second one with (sqrt(6) - 1)(61).

sqrt(3) / (sqrt(6) - 1) - sqrt(3) / (sqrt(6) + 1) = (sqrt(3)color(blue)((sqrt(6) + 1))) / ((sqrt(6) - 1)color(blue)((sqrt(6) + 1))) - (sqrt(3)color(green)((sqrt(6) - 1))) / ((sqrt(6) + 1)color(green)((sqrt(6) - 1))) 36136+1=3(6+1)(61)(6+1)3(61)(6+1)(61)

= (sqrt(3)(sqrt(6) + 1) - sqrt(3)(sqrt(6) - 1)) / ((sqrt(6) - 1)(sqrt(6) + 1))=3(6+1)3(61)(61)(6+1)

... use the formula (a + b)(a - b) = a^2 - b^2(a+b)(ab)=a2b2 to simplify the denominator...

= (sqrt(3) * sqrt(6) + sqrt(3) - sqrt(3) * sqrt(6) + sqrt(3)) / ((sqrt(6))^2 - 1^2)=36+336+3(6)212

= (cancel(sqrt(3) * sqrt(6)) + sqrt(3) - cancel(sqrt(3) * sqrt(6)) + sqrt(3)) / (6 - 1)

= (2 sqrt(3)) / 5

= 2/5 sqrt(3)