How do you simplify #sqrt18/(sqrt8-3) #?
↳Redirected from
"How do you evaluate #sin^-1 (-sqrt3/2)#?"
#-12-9sqrt(2)" "# Using 'primary root' only
#-12+-9sqrt(2)" "#All solutions.
Using #a^2-b^2=(a+b)(a-b)#
Multiply by 1 but in the form of #1=(sqrt(8)+3)/(sqrt(8)+3)#
#(sqrt(18)(sqrt(8)+3))/((sqrt(8)-3)(sqrt(8)+3))#
#(sqrt(18)(sqrt(8)+3))/(8-3^2)#
But #sqrt(8)=2sqrt(2)" and "sqrt(18)=3sqrt(2)#
#(3sqrt(2)(2sqrt(2)+3))/(8-3^2)#
#color(brown)("Note that from above,"-3^2" is different to "(-3)^2)#
#(12+9sqrt(2))/(-1)#
#-12-9sqrt(2)" "# Using 'primary root' only
#-12+-9sqrt(2)" "#All solutions.