How do you simplify sqrt(8x^5) * sqrt(3x)8x53x?

1 Answer
Apr 7, 2015

First you try to get the squares out of the root.

I'll do it step by step:

sqrt(8x^5)*sqrt(3x)=sqrt(2^2*2*(x^2)^2*x)*sqrt(3x)=8x53x=222(x2)2x3x=

2x^2sqrt(2x)*sqrt(3x)=2x^2sqrt(2x*3x)=2x^2sqrt(6*x^2)=2x22x3x=2x22x3x=2x26x2=

2x^2*x*sqrt6=2x^3sqrt62x2x6=2x36

OR :

sqrt(8x^5)*sqrt(3x)=sqrt(8x^5*3x)=8x53x=8x53x=

sqrt(24x^6)=sqrt(2^2*6*(x^3)^2)=2x^3sqrt624x6=226(x3)2=2x36