How do you simplify sqrt(7)*(2 sqrt(3) + 3 sqrt(7))7(23+37)?

1 Answer
Oct 16, 2015

2sqrt(21)+21221+21, or if you prefer sqrt(21)*(2+sqrt(21))21(2+21).

Explanation:

Expand the multiplications:

sqrt(7)*(2sqrt(3)+3*sqrt(7)) = 2sqrt(3*7) + 3sqrt(7*7)7(23+37)=237+377

Of course, sqrt(7*7)=sqrt(49)=777=49=7, so the expression begins

2sqrt(21)+3*7=2sqrt(21)+21221+37=221+21.

Since 21=sqrt(21)*sqrt(21)21=2121, you can factor sqrt(21)21 and obtain

sqrt(21)*(2+sqrt(21))21(2+21)